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ABSTRACT 
In this paper, we present a big data framework for the prediction 

of streaming trajectory data, enriched with data from other sources 

and exploiting mined patterns of trajectories from integrated data, 

allowing accurate long-term predictions with low latency. In 

particular, to meet this goal we follow a multi-step methodology. 

First, we efficiently compress surveillance data in an online 

fashion, by constructing trajectory synopses that are spatio-

temporally linked with streaming and archival data from a variety 

of diverse and heterogeneous data sources. The enriched stream of 

trajectory synopses is stored in a distributed RDF store, thus 

supporting data exploration via simple SPARQL queries. 

Moreover, the enriched stream of synopses along with the raw 

data is consumed by trajectory prediction algorithms that exploit 

mined patterns from the RDF store, namely medoids of (sub-) 

trajectory clusters, which prolong the temporal window of useful 

predictions. The framework is also extended with an offline and 

an online interactive visual analytics tool to facilitate real world 

analysis in the maritime and the aviation domains. 
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1 Introduction 

As the maritime and air-traffic management (ATM) domains have 

major impact to the global economy, a constant need is to advance 

the capacities of systems to improve safety and effectiveness of 

critical operations involving a large number of moving entities in 

large geographical areas [10]. Towards this goal, the correlated 

exploitation of heterogeneous data sources offering vast quantities 

of archival and high-rate streaming data is crucial for increasing 

the computations accuracy when analysing and predicting future 

states of moving entities. However, operational systems in these 

domains for predicting trajectories are still limited to a short-term 

horizon to date, while facing increased uncertainty and lack of 

accuracy in mobility data. 

Motivated by these challenges, we present ARGO1, a big 

data framework for online prediction trajectory data, enriched 

with data from other sources and exploiting mined patterns of 

trajectories from archival data sources. ARGO offers predictions 

such as ‘estimated flight of an aircraft over the next 10 minutes’ 

or ‘predicted route of a vessel in the next hour’ based on their 

current movement and historical motion patterns in the area.  

ARGO incorporates several innovative modules, operating in 

streaming mode over surveillance data, to deliver accurate long-

term predictions with low latency requirements. Incoming streams 

of moving objects’ positions are cleansed, compressed, integrated 

and linked with archival and contextual data by means of link 

discovery methods. All data is transformed to RDF, and stored for 

offline processing and analysis in a custom-built, distributed RDF 

store, specialized to process spatio-temporal RDF data. While this 

online process feeds the trajectory prediction module with 

enriched trajectory synopses, the distributed RDF store supports 

batch processing over vast-sized integrated data, and feeds 

modules performing trajectory clustering and visual analytics, 

which are used to discover mobility patterns that are finally 

exploited for online trajectory predictions. This paper describes 

the design and implementation of ARGO on top of state-of-the-art 

big data technologies (Spark, Flink, and Kafka), as well as 

                                                 
1 In Greek mythology, ARGO was the ship on which Jason and the Argonauts sailed 

to Colchis to retrieve the Golden Fleece. According to the legend, ARGO was at least 

as fast as a dove, thus metaphorically it was a ‘flying’ ship. 
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comprehensive demonstration scenarios that clearly show its 

value on real-life data sets from the maritime and ATM domains. 

To the best of our knowledge, in contrast to related state-of-the-art 

systems [11][7] and research approaches [4][8], ARGO is unique 

as a big data framework capable to provide long-term trajectory 

predictions in an online fashion. 

2 Major Modules and System Architecture 

In this section, we present the details of the major modules of 

ARGO. Then, we provide the overall architecture of our system. 

2.1 Synopses Generator 

The Synopses Generator (SG) [2][3] provides online, summarized 

representations of trajectories of vessels and aircrafts. Usually, 

large amounts of raw positional updates can hardly contribute 

additional knowledge about their actual motion patterns, e.g., 

most vessels normally follow almost straight, predictable routes at 

open sea, unless “emergency” circumstances prevail. Thus, 

instead of resorting to a costly trajectory simplification method, 

SG can be employed. Since our ultimate goal is trajectory 

prediction, SG drops any easily predictable positions along 

trajectory segments of “normal” motion characteristics and 

reconstructs the traces of the moving objects approximately from 

the judiciously chosen critical points along their trajectories 

without harming the quality of the resulting approximation. More 

specifically, SG detects trajectory features from streaming 

positions, identifies significant changes in movement online, and 

outputs lightweight synopses of coherent trajectory segments. 

Critical points can be of various types, including start and end of 

gap/stop/slow motion/change in heading. Note that the critical 

points are emitted at operational latency, so as not to cause delays 

in subsequent processing. Hence, this derived stream of trajectory 

synopses keeps in pace with the incoming raw streaming data so 

as to get incrementally annotated with semantically important 

mobility events. Ιn contrast to existing techniques, SG produces 

trajectory synopses in real-time, that are both space-efficient and 

highly accurate, with extremely low latency (within milliseconds 

since the arrival of raw messages [2][3]). 

2.2 Semantic Integrator 

The compressed stream of trajectory positions is received by the 

Semantic Integrator (SI), which performs two tasks: (a) data 

transformation to RDF, and (b) spatio-temporal link discovery 

(LD) against other data sources.  The output of the SI is a stream 

of integrated data, representing enriched trajectory synopses [5]. 

Data transformation to RDF is performed using RDF-Gen, 

an efficient method that operates in a record-by-record fashion 

and outperforms state-of-the-art tools [12]. RDF-Gen exploits the 

concept of graph templates, which are populated at runtime using 

data values from a specific data source, in compliance with a 

given ontology. It supports various data sources, user-defined 

functions for data values transformation and operates in an online 

fashion and has been implemented in Apache Flink. 

After the stream of incoming positions has been transformed 

to RDF, the link discovery module is responsible for interlinking 

with other archival sources. The most challenging link discovery 

tasks are of spatio-temporal nature; discovering topological (e.g., 

within) and proximity relations (e.g., nearby) between a moving 

entity and various 2D and 3D spatial data sets (ports, fishing and 

marine protected areas, waypoints, airblocks, sectors, etc.). Also, 

relations between more complex types are supported (point, 

polyline, polygon). For efficiency, blocking techniques are 

adopted, practically organizing the target data set in a grid 

structure, thus assigning any incoming entity of the source data set 

to a single cell (topological relations) or few cells (proximity 

relations), thus drastically reducing the number of necessary 

comparisons. Compared to existing LD frameworks, the following 

innovative features are provided: (a) support for proximity 

relations, instead of only topological, (b) operating over streaming 

inputs, (c) more efficient filtering [13] that exploits grid cells with 

empty space, and (d) a scalable, data-parallel implementation on 

Apache Flink. 

2.3 Data Manager 

The Data Manager has as the fundamental module of the 

distributed spatiotemporal RDF engine. It comprises two distinct 

layers: (a) the distributed storage layer, and (b) the parallel 

processing  layer.  

RDF storage engines typically store RDF data encoded using 

unique identifiers, for efficient indexing and access. In our work, 

we exploit a deliberate encoding scheme that maps spatio-

temporal positions to 1D keys [9], providing lightweight indexing. 

This enables spatio-temporal filtering by checking against this 

key, avoiding the construction and maintenance overhead of 

distributed spatio-temporal index structures. After encoding the 

data, any NoSQL storage solution can be exploited. In our 

prototype, we store Parquet files in HDFS, allowing compression 

and efficient retrieval. Also, we support different RDF storage 

layouts; both the one-triples-table approach, as well as property 

tables together with a leftover triples table to reduce the number 

of required joins. Moreover, the corresponding dictionary that 

maintains the mapping from 1D keys to string values is stored in 

Redis, in-memory distributed key-value pairs. 

The processing layer is implemented in Apache Spark takes 

as input SPARQL queries along with a spatio-temporal constraint. 

We have implemented the main components of a query processing 

engine [1]: logical and physical operators, logical and physical 

planner, as well as main optimization techniques, such as join 

selection (repartition join vs. broadcast join) by output size 

estimation using histograms. In this way, our engine supports 

different execution plans, and can be further extended towards 

cost-based optimization. Furthermore, our engine supports 

predicate pushdown by exploiting the interplay between Spark 

and Parquet, thus avoiding reading all triples from disk to 

memory.  Compared to existing distributed RDF engines that need 

a post-processing step to exclude triples that do not satisfy the 

spatio-temporal constraints, thereby producing many candidate 

results in vain, our approach can filter data “jointly”, thus pruning 

many more candidate triples at an early processing stage of an 

execution plan. 

2.4 (Sub-)Trajectory Clustering Module 

The (Sub-)Trajectory Clustering (STC) module first partitions 

trajectories into sub-trajectories and then identify the most 

representative ones that will act as cluster “pivots”. By using these 

representatives, it forms clusters around them, while at the same 

time identifies those (sub-)trajectories (called outliers) that fit into 

no group. The S2T-Clustering [4] solution to this problem first 
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applies a neighborhood-aware trajectory segmentation method, 

where each trajectory is split into sub-trajectories whenever the 

plurality of its neighborhood changes significantly; then a 

specialized sampling method selects the most representative (sub-

)trajectories to serve as the seeds of the clusters; and finally uses a 

greedy clustering algorithm that decides which of representatives 

can serve as the pivots of the clusters w.r.t. an optimization 

criterion. However, the work presented in [4] is centralized and 

limited for voluminous data sets. For this reason, we re-

implemented S2T-Clustering by using the MapReduce 

programming framework. The role of this module to the overall 

architecture of ARGO is to take as input data selected from the 

RDF store, apply STC, and provide the resulting representatives 

(i.e. cluster medoids) both to the prediction module as well as 

back to the RDF store. Figure 1 illustrates the visual exploration 

of cluster representatives using the visual analytics tool (V-

Analytics) that is coupled with ARGO. 

 

Figure 1: Visual exploration of clustering results in V-

Analytics (offline) tool: 2D and 3D shapes of cluster medoids. 

2.5 Future Location Prediction Module 

The Future Location Prediction (FLP) module aims to make an 

accurate estimation of the next movement of a moving object 

within a specific look-ahead time frame, as shown in Figure 2. 

FLP is usually addressed at short-term horizon, since the 

prediction errors are cumulative and expand exponentially as the 

look-ahead span increases. However, given properly trained 

models from historic data in conjunction to clusters of trajectories 

discovered, ARGO can support long-term prediction, as well, 

identifying cases that exceed regular mobility patterns.  The FLP 

module addresses two main orthogonal aspects for big data 

applications: online/offline operation; and short-/long-term 

prediction. The first refers to the time frame available for 

producing the prediction, while the second refers to the time 

frame of the prediction itself, i.e., the look-ahead time. Among the 

methods we have developed,  the online long-term prediction, 

named FLP-L, which exploits on discovered routes from historic 

data using the STC module is the most challenging, compared to 

the online short-term prediction or FLP-S, which adapts the RMF 

algorithm [6]. 

The original RMF formulation is very promising for short-

term FLP, but it has stability issues (due to the application of SVD 

to noisy and/or ill-conditioned input data, which is common in 

real world). In this work we developed an improved, online 

variation of RMF, coined P-RMF*, in order to address these 

instabilities, as well as real world requirements for the maritime 

and aviation domains in the context of big data. Our approach 

differs from the standard RMF framework in key aspects 

regarding sampling rate, type of processing (atomic vs. 

distributed), nature of processing (batch vs. online) and nature of 

data. P-RMF* selects, among candidate domain-specific motion 

functions, the most promising in terms of prediction error to pre-

calculate a solution for the motion state vector, avoiding SVD 

instability issues. 

FLP-L exploits the cluster representatives mined from 

historical data as a reference for producing FLP forecasts 

“aligned” with the “closest-matched” route in the maximum-

likelihood sense. This is a very different approach for tackling the 

FLP problem, as it makes the associated predictive models less 

adaptive but more reliable, by introducing specific “memory”, 

based on historic data of either a large fleet of objects or a single 

object with long duration. In practice, this means exploiting the 

patterns and trends of objects in the same routes, conditions and 

constraints (e.g., regular maritime traffic). These routes are 

efficiently exploited to enhance the accuracy and size of the look-

ahead window. It should be noted that having a pre-computed set 

of routes available for retrieval and top-k lookup, although more 

computationally- and resource-intensive than the FLP-S approach 

described earlier, it is still fast enough to implement it in an online 

fashion. In practice, several such routes are pre-computed offline 

by first selecting the area of interest for several thousands of 

objects, making FLP-L feasible to provide long-term predictions 

for large fleets in an online fashion. 

  

Figure 2: Interactive visual exploration of raw (red) vs. 

predicted (grey) location data in IVA (online) tool, along 

generated synopses (icons). 

2.6 System Architecture 

The proposed framework for trajectory prediction is implemented 

as a big data architecture and illustrated in Figure 3. It comprises 

two parts/layers: (a) stream processing layer, and (b) batch 

processing layer, which interact in order to provide the desired 

functionality.  

       Briefly, the stream processing layer processes stream of 

surveillance data, and performs online noise elimination, 

compression and semantic data integration. The synopsized and 

enriched data stream, represented in RDF, can be consumed as it 

is, thus enabling the deployment of data analysis pipelines, and it 

is also stored in a distributed spatiotemporal RDF store for batch 

processing. 

This store supports scalable and efficient processing of 

SPARQL queries with spatiotemporal constraints, providing 

filtered, integrated, spatiotemporal data for higher level analysis 

tasks. Offline analysis of integrated data (e.g., for trajectory 

clustering) generates mined patterns, which are exploited in 

conjunction to the enriched data stream during the online 

operation of the trajectory prediction module. 
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Figure 3: Architecture of the ARGO framework. 

Stream processing layer: The stream-based interconnection 

is based on Apache Kafka to ensure scalability and fault-

tolerance. The individual modules have been developed in Apache 

Flink, thus allowing parallelization in a computer cluster. While 

the synopses generation and data transformation to RDF are easily 

parallelized by partitioning by moving object identifier, the 

parallelization of the link discovery module is more challenging. 

Two different techniques have been implemented: (a) blocking of 

archival data by space partitioning, and (b) building an index over 

archival data and broadcast this index to nodes.  

Batch processing layer: The massive generation of 

integrated data in RDF poses requirements for scalable SPARQL 

querying. Unfortunately, existing parallel/distributed SPARQL 

engines cannot natively support spatiotemporal data. Motivated by 

this shortcoming, we developed a distributed spatiotemporal RDF 

engine in Apache Spark, which includes salient features, including 

1D spatiotemporal encoding [9], logical and physical planning 

optimization, thus efficiently processing of spatiotemporal 

SPARQL queries. This engine feeds STC module with integrated 

data, filtered in space and time. The STC discovers movement 

patterns in the form of medoids of (sub-) trajectory clusters. 

Finally, the FLP module exploits the mined patterns and uses 

them for predicting the future positions of a moving object. 

3 Demo Specifications 

ARGO will be demonstrated using two real-world data sets. The 

first data set (maritime domain) covers a time span of six months, 

from October 2015 to March 2016 and provides positions of 

vessels sailing in the Celtic sea, and is publicly available2. The 

second data set (aviation domain) consists of radar tracks of the 

Spanish airspace for one week in April 2016. Our demonstration 

consists of three complementary parts: (1) preparation of 

surveillance data (cleaning, compression, integration) to be stored 

in the distributed RDF store, (2) interactive pattern discovery, 

which is based on the interplay between the visual analytics and 

trajectory clustering components on the one hand, and the 

distributed RDF store that provides query results for interactively 

selected spatio-temporal slices of integrated data, and (3)  online 

trajectory prediction, exploiting the mined patterns. 

                                                 
2 RAY, Cyril, DRÉO, Richard, CAMOSSI, Elena, & JOUSSELME, Anne-Laure. 

(2018). Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, 

and Reconnaissance (Version 0.1) [Data set]. Zenodo. 

http://doi.org/10.5281/zenodo.1167595 

 

Demonstration I: Preparatory phase. Initially, the user 

has the opportunity to comprehend the internals of our 

implementation and API, which bases on state-of-the-art big data 

computational frameworks, such as Apache Flink and Kafka. The 

user selects a data set and initiates the chain of stream processing 

components, which generates trajectory synopses, transforms data 

to RDF, and performs interlinking with archival data describing 

areas of interest (e.g., Natura protected areas and fishing areas for 

maritime, and 3D sectors and airblocks for aviation). The output is 

an integrated data set represented in RDF format.  

Demonstration II: Interactive pattern discovery. Having 

gained the necessary background knowledge, the user experiences 

an interactive session, where the visual analytics component 

selects integrated data by querying the RDF store, filters and 

aggregates it, and repeats this operation until a suitable data set for 

training is found. Trajectory clustering component processes this 

data set and outputs the discovered patterns in the form of 

representative trajectories. 

Demonstration III: Online trajectory prediction. In turn, 

we present how the prediction module exploits the mined patterns 

to output predictions for the future location of incoming moving 

object positions from the stream of integrated data. Predictions get 

updated as new positional data arrive in the system. 

For deeper comprehension of the demonstration scenarios, 

related videos are available at ARGO’s demo web page3. 
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